Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Clin Transl Med ; 12(12): e1103, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2127659

ABSTRACT

BACKGROUND: The crosstalk between the ubiquitin-proteasome and the immune system plays an important role in the health and pathogenesis of viral infection. However, there have been few studies of ubiquitin activation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: We investigated the effect of ubiquitination on SARS-CoV-2 infection and patient prognosis by integrating published coronavirus disease 2019 (COVID-19) multi-transcriptome data and bioinformatics methods. RESULTS: The differential expression of COVID-19 samples revealed changed ubiquitination in most solid and hollow organs, and it was activated in lymphatic and other immune tissues. In addition, in the respiratory system of COVID-19 patients, the immune response was mainly focused on the alveoli, and the expression of ubiquitination reflected increasing immune infiltration. Ubiquitination stratification could significantly differentiate patients' prognosis and inflammation levels through the general transcriptional analysis of the peripheral blood of patients with COVID-19. Moreover, high ubiquitination levels were associated with a favourable prognosis, low inflammatory response, and reduced mechanical ventilation and intensive care unit. Moreover, high ubiquitination promoted a beneficial immune response while inhibiting immune damage. Finally, prognostic stratification and biomarker screening based on ubiquitination traits played an important role in clinical management and drug development. CONCLUSION: Ubiquitination characteristics provides new ideas for clinical intervention and prognostic guidance for COVID-19 patients.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Ubiquitination/genetics , Ubiquitin , Proteasome Endopeptidase Complex
2.
Signal Transduct Target Ther ; 7(1): 300, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-2031821

ABSTRACT

Ubiquitination is a highly conserved and fundamental posttranslational modification (PTM) in all eukaryotes regulating thousands of proteins. The RING (really interesting new gene) finger (RNF) protein, containing the RING domain, exerts E3 ubiquitin ligase that mediates the covalent attachment of ubiquitin (Ub) to target proteins. Multiple reviews have summarized the critical roles of the tripartite-motif (TRIM) protein family, a subgroup of RNF proteins, in various diseases, including cancer, inflammatory, infectious, and neuropsychiatric disorders. Except for TRIMs, since numerous studies over the past decades have delineated that other RNF proteins also exert widespread involvement in several diseases, their importance should not be underestimated. This review summarizes the potential contribution of dysregulated RNF proteins, except for TRIMs, to the pathogenesis of some diseases, including cancer, autoimmune diseases, and neurodegenerative disorder. Since viral infection is broadly involved in the induction and development of those diseases, this manuscript also highlights the regulatory roles of RNF proteins, excluding TRIMs, in the antiviral immune responses. In addition, we further discuss the potential intervention strategies targeting other RNF proteins for the prevention and therapeutics of those human diseases.


Subject(s)
Neoplasms , Ubiquitin-Protein Ligases , Humans , Neoplasms/genetics , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/genetics
3.
Signal Transduct Target Ther ; 7(1): 312, 2022 09 07.
Article in English | MEDLINE | ID: covidwho-2008259

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a global pandemic that seriously threatens health and socioeconomic development, but the existed antiviral drugs and vaccines still cannot yet halt the spread of the epidemic. Therefore, a comprehensive and profound understanding of the pathogenesis of SARS-CoV-2 is urgently needed to explore effective therapeutic targets. Here, we conducted a multiomics study of SARS-CoV-2-infected lung epithelial cells, including transcriptomic, proteomic, and ubiquitinomic. Multiomics analysis showed that SARS-CoV-2-infected lung epithelial cells activated strong innate immune response, including interferon and inflammatory responses. Ubiquitinomic further reveals the underlying mechanism of SARS-CoV-2 disrupting the host innate immune response. In addition, SARS-CoV-2 proteins were found to be ubiquitinated during infection despite the fact that SARS-CoV-2 itself didn't code any E3 ligase, and that ubiquitination at three sites on the Spike protein could significantly enhance viral infection. Further screening of the E3 ubiquitin ligases and deubiquitinating enzymes (DUBs) library revealed four E3 ligases influencing SARS-CoV-2 infection, thus providing several new antiviral targets. This multiomics combined with high-throughput screening study reveals that SARS-CoV-2 not only modulates innate immunity, but also promotes viral infection, by hijacking ubiquitination-specific processes, highlighting potential antiviral and anti-inflammation targets.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents , Humans , Proteomics , Ubiquitin-Protein Ligases , Ubiquitination/genetics
4.
Cells ; 9(6)2020 06 22.
Article in English | MEDLINE | ID: covidwho-874568

ABSTRACT

Ubiquitination is a post-translational modification that regulates cellular processes by altering the interactions of proteins to which ubiquitin, a small protein adduct, is conjugated. Ubiquitination yields various products, including mono- and poly-ubiquitinated substrates, as well as unanchored poly-ubiquitin chains whose accumulation is considered toxic. We previously showed that transgenic, unanchored poly-ubiquitin is not problematic in Drosophila melanogaster. In the fruit fly, free chains exist in various lengths and topologies and are degraded by the proteasome; they are also conjugated onto other proteins as one unit, eliminating them from the free ubiquitin chain pool. Here, to further explore the notion of unanchored chain toxicity, we examined when free poly-ubiquitin might become problematic. We found that unanchored chains can be highly toxic if they resemble linear poly-ubiquitin that cannot be modified into other topologies. These species upregulate NF-κB signaling, and modulation of the levels of NF-κB components reduces toxicity. In additional studies, we show that toxicity from untethered, linear chains is regulated by isoleucine 44, which anchors a key interaction site for ubiquitin. We conclude that free ubiquitin chains can be toxic, but only in uncommon circumstances, such as when the ability of cells to modify and regulate them is markedly restricted.


Subject(s)
Immunity, Innate/genetics , Isoleucine/metabolism , NF-kappa B/metabolism , Protein Processing, Post-Translational/genetics , Ubiquitin/metabolism , Ubiquitination/genetics , Animals , Drosophila melanogaster , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL